
DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 1

Scaling to Mega-Multicore through

Advanced Execution Models

Thomas Sterling, Ph.D
Arnaud and Edwards Professor of Computer Science

Louisiana State University

Visiting Associate, California Institute of Technology

Distinguished Visiting Scientist, Oak Ridge National Laboratory

CSRI Fellow, Sandia National Laboratory

November 16, 2009

Presentation to SC09 Workshop

on: User Experience and

Advances in Bridging Multicore’s

Programmability Gap

Summary of Multicore Programming Challenges

• Transition form serial to parallel programming for commercial

applications

• HPC applications demand increased parallelism for increase

in performance

– Per core performance unlikely to increase significantly

– More cores for more performance means more parallelism

• New level of bottlenecks in system architecture hierarchy

– Wrong side of shared pins for main memory access

• Reduction of main memory capacity per core

– # cores increasing faster than memory capacity per system

• Complications of cache behavior to program performance

– More cores per coherence domain

– NUMA-like behavior in shared name space access

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 2

Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 3

Scaling to Mega-multicore systems

• … and that was the good news

• HPC over the next decade

– Exaflops by 2020 extending Top-500 curves

– 11 nanometer feature size

– Power efficiency must improve by > 2 orders of magnitude

– Concurrency > billion-way

– More than 100 million cores

– Likelihood of heterogeneity of cores

– System reconfiguration for graceful degradation in the presence of

faults

• DARPA recent studies

– Exascale Technology Study, chaired by Peter Kogge

– Exascale Software Study, chaired by Vivek Sarkar

– Exascale Resilience Study, chaired by Mootaz

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 4

Programming Requirements for Mega-

multicore Systems (1)
• Power efficiency

– 50 Pico-joules (total average) per floating point operation

– If not automatic, then requires programmer intervention

• Concurrency

– Expose multi-billion way parallelism

• Intrinsic latency mitigation

– Minimize data movement by locality management and copy semantics

– Latency hiding through overlap of communication with computation

• Symmetric semantics

– Between local synchronous and global asynchronous

– Instantiation of actions

– Name space

– Synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 5

Programming Requirements for Mega-

multicore Systems (2)
• Locality management

– Keep things together for

• low latency and

• low power

– Keep things apart for

• high bandwidth,

• concurrent action,

• load balancing, and

• performance

• Resilience

– MTBF of single point failures too short to span application

• Checkpointing time to exceed MTBF

– What to do in the presence of unrecoverable faults

– Software fault tolerance methods

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 6

Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 7

HPC in Phase Change

• Technology advances demand new system structures and

operational modalities for optimality

• SLOW – sources of performance degradation

– Starvation: insufficient parallelism

– Latency: of access and action to remote resources

– Overhead: of critical work for resource management

– Waiting: for contention of access to shared resources

• Paradigm shift in organizing computing

– Architecture

– Programming models and compilation techniques

– OS and runtime

• The 6th Phase

– Scalability, efficiency, power, programmability, reliability

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 8

Past Phases

• Phase I: Sequential instruction execution

• Phase II: Sequential instruction issue

• pipeline execution,

• reservation stations,

• ILP

• Phase III: Vector

• pipelined arithmetic, registers, memory access

• Cray

• Phase IV: SIMD

• MasPar, CM-2

• Phase V: Communicating Sequential Processes

• MPP, clusters

• MPI

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 9

HPC Projections towards Exascale

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

G
F

lo
p

s

Exascale

But not at 20 MW!

Heavyweight

Lightweight

Courtesy of Peter Kogge, UND

Power Efficiency

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

R
m

a
x
 G

fl
o

p
s
 p

e
r

W
a
tt

Historical Top 10 Top System Trend Line

Exascale Goal Aggressive Strawman Light Node Simplistic

Heavy Node Simplistic Light Node Fully Scaled Heavy Node Fully Scaled

1 Eflops @ 20MW

Courtesy of Peter Kogge, UND

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

T
o

ta
l

C
o

n
c
u

rr
e
c
n

c
y

Top 10 Top System Top 1 Trend

Historical Exa Strawman Evolutionary Light Node

Evolutionary Heavy Node

Data Center Total Concurrency

Billion-way concurrency

Million-way concurrency

Thousand-way concurrency

Courtesy of Peter Kogge, UND

Exascale Design Point

• Feature size of 22 to 11 nanometers,

CMOS in 2018

• Total average of 25 Pico-joules per

floating point operation

• Approximately 10 billion-way parallelism

• 100 million to 1 billion cores

• Clock rates of 1 to 2 GHz (this is

approximate with a possible error of a

factor of 2)

• Multi-threaded fine grain parallelism of 10

to 100 way concurrency per core

• 100’s of cores per die (varies dramatically

depending on core type, and other

factors)

• Global address space without cache

coherence; extensions to PGAS (AGAS)

• 128 Petabytes capacity mix of DRAM and

nonvolatile memory

• Explicitly managed high speed buffer

caches; part of deep memory hierarchy

• Optical communications for distances >

10 centimeters, possibly inter-socket

• Optical bandwidth of 1 Terabit per second

• System-wide latencies on the order of

10’s of thousands of cycles

• Active power management to eliminate

wasted energy by unused cores

• Fault tolerance by means of graceful

degradation and dynamically

reconfigurable structures

• Hardware rapid thread context switching

• Hardware message to thread conversion

for message-driven computation

• Hardware lightweight synchronization

• 3-D packaging of dies for stacks of 4 to 10

dies each

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 13

Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 14

Purpose of Models of Computation

• Not just an academic intellectual exercise

• Critical tool for realizing effective Exascale applications

• To address challenges imposed by technology changes

• To exploit opportunities delivered by technology advances

• Reflects change to (VIth) HPC phase

• Facilitates co-design of separate but interoperable system

layers

• Supports new methods

• Frees previous constraints, “deadly embrace” of

conventional practices

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 15

System “Hour-Glass” Stack

16

Attributes of an Execution Model (1)

• A single representation of a system class

– All such systems share the same specifications

– All layers of the system are implicitly represented

• Architecture, OS, runtime, compiler, programming models

• Not necessarily explicitly exposed

• Effects of interoperability as an emergent property

– Systems may be distinguished by implementation

• Strategies

– Approach to solving perceived problems to effective operation

– Approach to exploiting the new capabilities of advanced technologies

• Semantics

– Named and manipulated entities

– Action categories

• Threads, processes, functions, operations, atomic

– Parallelism

• Forms, granularity, synchronization, ordering, eager/lazy evaluation

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 17

Attributes of an Execution Model (2)

• Controlling physical resources

– Managing power

– Reconfiguring for graceful degradation

– Self-aware status monitoring and load balancing response

• Policies

– Invariants of operational properties specified

– Implementation methods to achieve properties unspecified

– Leaves flexibility

• Adapting alternative technologies

• Distinctive balance points between hardware and software

– Permits differentiation

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 18

Attributes of an Execution Model (3)

• Abstract to physical relationships

– Address translation

– Routing

– Protection

– Distribution versus locality management

– Dynamic adaptive migration

– Moving work to data, not just data to work

• Traversing continuations

• Determines commonality

– Portability

– Stability across generations

– ISV application software product targets

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 19

Goals of a New Model of Parallel

Computation for HPC Phase VI-Exascale

• Serve as a discipline to govern future scalable system
architectures, programming methods, and runtime

• Latency hiding at all system distances

– Latency mitigating architectures

• Exploit parallelism in diversity of forms and granularity

• Provide a framework for efficient fine grain synchronization and
scheduling (dispatch)

• Enable optimized runtime adaptive resource management and
task scheduling for dynamic load balancing

• Support full virtualization for fault tolerance and power
management, and continuous optimization

• Self aware infrastructure for power management

• Semantics of failure response for graceful degradation

• Complexity of operation as an emergent behavior from simplicity
of design, high replication, and local adaptation for global optima
in time and space

Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 21

Major Elements of a Mega-Multicore

Execution Model

• “Active Global Address Space”

• Parallel Processes as Name-space Contexts

• User threads, lightweight, ephemeral, and context-

switched

• Message-driven Computation with “Parcels”

• Futures and Dataflow synchronization for lightweight

synchronization and continuation migration

• “Percolation” for heterogeneous computing

• Fault tolerance through compute-validate-commit

cycle

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 22

23

Localities

• A “locality” is a contiguous physical domain

• Guarantees compound atomic operations on local state

• Manages intra-locality latencies

• Exposes diverse temporal locality attributes

• Divides the world into synchronous and asynchronous

• System comprises a set of mutually exclusive, collectively
exhaustive localities

• A first class object

• An attribute of other objects

• Heterogeneous

• Specific inalienable properties

24

Multithreading

• Threads are collections of related operations that perform

on locally exchanged data values

• A thread is a continuation combined with a local

environment

– Modifies local named data state and temporaries

– Updates intra-thread and inter-thread control state

• Does not assume sequential execution

– Other flow control for intra-thread operations possible

• Thread can realize transaction phase

• Thread does not assume dedicated execution resources

• Thread is first class object identified in global name space

• Thread is ephemeral

25

LCOs

• A number of forms of synchronization are incorporated into the
semantics

• Support message-driven remote thread instantiation

• In-memory synchronization
– Control state is in the name space of the machine

– Producer-consumer in memory

– Local mutual exclusion protection

– Synchronization mechanisms as well as state are presumed to be intrinsic
to memory

• Basic synchronization objects:
– Mutexes

– Semaphores

– Events

– Full-Empty bits

– Data flow

– Futures

– …

• User-defined (custom) LCOs

Advanced Models of Computation for

Exascale Systems

26

27

Active Global Address Space (AGAS)

• Distributed

• Assumes no coherence between localities

• User variables

• Synchronization variables and objects

• Threads as first-class objects

• Moves virtual named elements in physical space

• Parcel sets (but not parcels!)

• Process

– First class object

– Specifies a broad task

– Defines a distributed environment

• Spans multiple localities

• Need not be contiguous

Motivation for Parcels

• To achieve high scalability, efficiency, programmability

• To enable new models of computation

– e.g., ParalleX

• To facilitate conventional models of computation

– e.g., MPI

• Hide latency

– Support overlap of communication with computation

– Move work to data, not always data to work

• Work-queue model of computing

– Segregate physical resource from abstract task

– Circumvent blocking of resource utilization

• Support asynchrony of operation

• Maintain symmetry of semantics between local and remote operation

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 28

Parcel Interaction with the System

LOUISIANA STATE UNIVERSITY 29

Parcels

AGAS

Locality 1

Locality 2

Locality 3

Locality n

Threads

LCOs

DCOs. . .
AMOs

processes

Main

Copy Semantics

Metathreads

30

Parcel Structure

LOUISIANA STATE UNIVERSITY

destination payloadaction continuations CRC

Transport / network layer

protocol wrappers

header trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize

the message footprint (e.g. destination address, checksum)

Parcel Destination

• Application specific addressing:

– Global virtual address of target (recipient) object

– Current implementation: HPX GID (global ID), 128-bit

• System specific addressing:

– Physical address of a hardware resource

– Supports direct access to register space or state machine

manipulation

– May be required for percolation

LOUISIANA STATE UNIVERSITY 31

Parcel Actions

• Data movement

– Block read and write

– Lightweight scalar load/store

• Synchronization

– Atomic Memory Operations

– Basic LCOs

• Thread manipulation

– Thread instantiation

– Thread register access

– Thread control and state management

• Direct hardware access

– Counters

– Physical memory

– State machines

LOUISIANA STATE UNIVERSITY 32

Parcel Payload

• Lightweight

– Remote function arguments (includes LCO actions)

– AMO operands

– Scalar load / store

• Heavyweight

– Action-dependent

– Migrating object state

– Page relocation

– Some percolation instances

LOUISIANA STATE UNIVERSITY 33

Parcel Continuations

• Enables migration of flow control across global space

• Format: list of arbitrary LCOs

• Accept result(s) returned by parcel-invoked action

• Continuation types

– Return the value to the requestor

– Standard LCO evaluation

• Spawn local computation

• Propagate the result to another locality via parcel

– Perform a system call

LOUISIANA STATE UNIVERSITY 34

PXI Interface Synopsis

35
DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY

Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 36

Fibonacci Sequence

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

R
u

n
ti

m
e

 [
s]

x: fib(x)

Runtimes for Different Implementations (4 cores)

HPX (1OS thread)

HPX (2OS threads)

Java

pthreads

Using HPX for AMR

Conclusions
• HPC is in a (6th) phase change

• Multicore will provide the basis for future Exascale HPC

Systems by the End of the Next Decade

• Programming Gap for Mega-Multicore Systems Extends

Requirements to Asynchronous Domain and Billion-way

Parallelism

• Ultra high scale computing of the next decade will require a

new model of computation to effectively exploit new

technologies and guide system co-design

• ParalleX is an example of an experimental execution model

that addresses key challenges to Exascale

• Early experiments prove encouraging for enhancing scaling

of graph-based numeric and informatic applications

DEPARTMENT OF COMPUTER SCIENCE @

LOUISIANA STATE UNIVERSITY 39

