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Summary of Multicore Programming Challenges

• Transition form serial to parallel programming for commercial 

applications

• HPC applications demand increased parallelism for increase 

in performance

– Per core performance unlikely to increase significantly

– More cores for more performance means more parallelism

• New level of bottlenecks in system architecture hierarchy

– Wrong side of shared pins for main memory access

• Reduction of main memory capacity per core

– # cores increasing faster than memory capacity per system

• Complications of cache behavior to program performance

– More cores per coherence domain

– NUMA-like behavior in shared name space access
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Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization
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Scaling to Mega-multicore systems

• … and that was the good news

• HPC over the next decade

– Exaflops by 2020 extending Top-500 curves

– 11 nanometer feature size

– Power efficiency must improve by > 2 orders of magnitude

– Concurrency > billion-way

– More than 100 million cores

– Likelihood of heterogeneity of cores

– System reconfiguration for graceful degradation in the presence of 

faults

• DARPA recent studies

– Exascale Technology Study, chaired by Peter Kogge

– Exascale Software Study, chaired by Vivek Sarkar

– Exascale Resilience Study, chaired by Mootaz
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Programming Requirements for Mega-

multicore Systems (1)
• Power efficiency

– 50 Pico-joules (total average) per floating point operation

– If not automatic, then requires programmer intervention

• Concurrency

– Expose multi-billion way parallelism 

• Intrinsic latency mitigation

– Minimize data movement by locality management and copy semantics

– Latency hiding through overlap of communication with computation

• Symmetric semantics

– Between local synchronous and global asynchronous

– Instantiation of actions

– Name space

– Synchronization 
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Programming Requirements for Mega-

multicore Systems (2)
• Locality management

– Keep things together for 

• low latency and 

• low power

– Keep things apart for 

• high bandwidth,

• concurrent action, 

• load balancing, and 

• performance

• Resilience

– MTBF of single point failures too short to span application

• Checkpointing time to exceed MTBF

– What to do in the presence of unrecoverable faults

– Software fault tolerance methods
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HPC in Phase Change

• Technology advances demand new system structures and 

operational modalities for optimality

• SLOW – sources of performance degradation

– Starvation: insufficient parallelism

– Latency: of access and action to remote resources

– Overhead: of critical work for resource management

– Waiting: for contention of access to shared resources

• Paradigm shift in organizing computing

– Architecture

– Programming models and compilation techniques

– OS and runtime

• The 6th Phase

– Scalability, efficiency, power, programmability, reliability
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Past Phases

• Phase I: Sequential instruction execution

• Phase II: Sequential instruction issue

• pipeline execution, 

• reservation stations,

• ILP

• Phase III: Vector

• pipelined arithmetic, registers, memory access

• Cray

• Phase IV: SIMD

• MasPar, CM-2

• Phase V: Communicating Sequential Processes

• MPP, clusters

• MPI
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HPC Projections towards Exascale
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Power Efficiency
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Exascale Design Point

• Feature size of 22 to 11 nanometers, 

CMOS in 2018

• Total average of 25 Pico-joules per 

floating point operation

• Approximately 10 billion-way parallelism

• 100 million to 1 billion cores

• Clock rates of 1 to 2 GHz (this is 

approximate with a possible error of a 

factor of 2)

• Multi-threaded fine grain parallelism of 10 

to 100 way concurrency per core

• 100’s of cores per die (varies dramatically 

depending on core type, and other 

factors)

• Global address space without cache 

coherence; extensions to PGAS (AGAS)

• 128 Petabytes capacity mix of DRAM and 

nonvolatile memory

• Explicitly managed high speed buffer 

caches; part of deep memory hierarchy

• Optical communications for distances > 

10 centimeters, possibly inter-socket

• Optical bandwidth of 1 Terabit per second

• System-wide latencies on the order of 

10’s of thousands of cycles

• Active power management to eliminate 

wasted energy by unused cores

• Fault tolerance by means of graceful 

degradation and dynamically 

reconfigurable structures

• Hardware rapid thread context switching

• Hardware message to thread conversion 

for message-driven computation

• Hardware lightweight synchronization

• 3-D packaging of dies for stacks of 4 to 10 

dies each 
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Purpose of Models of Computation

• Not just an academic intellectual exercise

• Critical tool for realizing effective Exascale applications

• To address challenges imposed by technology changes

• To exploit opportunities delivered by technology advances

• Reflects change to  (VIth) HPC phase

• Facilitates co-design of separate but interoperable system 

layers

• Supports new methods

• Frees previous constraints, “deadly embrace” of  

conventional practices
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System “Hour-Glass” Stack
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Attributes of an Execution Model (1)

• A single representation of a system class

– All such systems share the same specifications

– All layers of the system are implicitly represented

• Architecture, OS, runtime, compiler, programming models

• Not necessarily explicitly exposed

• Effects of interoperability as an emergent property

– Systems may be distinguished by implementation 

• Strategies

– Approach to solving perceived problems to effective operation

– Approach to exploiting the new capabilities of advanced technologies

• Semantics

– Named and manipulated entities

– Action categories

• Threads, processes, functions, operations, atomic

– Parallelism

• Forms, granularity, synchronization, ordering, eager/lazy evaluation
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Attributes of an Execution Model (2)

• Controlling physical resources

– Managing power

– Reconfiguring for graceful degradation

– Self-aware status monitoring and load balancing response

• Policies

– Invariants of operational properties specified

– Implementation methods to achieve properties unspecified

– Leaves flexibility

• Adapting alternative technologies

• Distinctive balance points between hardware and software

– Permits differentiation
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Attributes of an Execution Model (3)

• Abstract to physical relationships

– Address translation

– Routing

– Protection 

– Distribution versus locality management

– Dynamic adaptive migration

– Moving work to data, not just data to work

• Traversing continuations

• Determines commonality

– Portability

– Stability across generations

– ISV application software product targets
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Goals of a New Model of Parallel 

Computation for HPC Phase VI-Exascale

• Serve as a discipline to govern future scalable system 
architectures, programming methods, and runtime

• Latency hiding at all system distances

– Latency mitigating architectures

• Exploit parallelism in diversity of forms and granularity

• Provide a framework for efficient fine grain synchronization and 
scheduling (dispatch)

• Enable optimized runtime adaptive resource management and 
task scheduling for dynamic load balancing

• Support full virtualization for fault tolerance and power 
management, and continuous optimization

• Self aware infrastructure for power management

• Semantics of failure response for graceful degradation

• Complexity of operation as an emergent behavior from simplicity 
of design, high replication, and local adaptation for global optima 
in time and space



Key Points

• Programming Gap for Mega-multicore Systems

– Extending beyond multicore sockets and coherency domains

– Towards Exascale computing by the end of the next decade

• HPC in Phase Change

– Technology pushes through punctuated equilibrium

• Role of new model of computation

– Paradigm shift, adjusts to new set of needs

• ParalleX as an example

– Includes some (not all) of the fundamental features needed

• Early results from ACS encouraged ParalleX project

– Dynamic scheduling of lightweight user threads

– Elimination of global barriers through lightweight synchronization

DEPARTMENT OF COMPUTER SCIENCE  @ 

LOUISIANA STATE UNIVERSITY 21



Major Elements of a Mega-Multicore 

Execution Model

• “Active Global Address Space”

• Parallel Processes as Name-space Contexts

• User threads, lightweight, ephemeral, and context-

switched

• Message-driven Computation with “Parcels”

• Futures and Dataflow synchronization for lightweight 

synchronization and continuation migration

• “Percolation” for heterogeneous computing

• Fault tolerance through compute-validate-commit 

cycle
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Localities

• A “locality” is a contiguous physical domain

• Guarantees compound atomic operations on local state

• Manages intra-locality latencies

• Exposes diverse temporal locality attributes

• Divides the world into synchronous and asynchronous

• System comprises a set of mutually exclusive, collectively 
exhaustive localities

• A first class object

• An attribute of other objects

• Heterogeneous

• Specific inalienable properties
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Multithreading

• Threads are collections of related operations that perform 

on locally exchanged data values

• A thread is a continuation combined with a local 

environment

– Modifies local named data state and temporaries

– Updates intra-thread and inter-thread control state

• Does not assume sequential execution

– Other flow control for intra-thread operations possible

• Thread can realize transaction phase

• Thread does not assume dedicated execution resources

• Thread is first class object identified in global name space

• Thread is ephemeral
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LCOs

• A number of forms of synchronization are incorporated into the 
semantics

• Support message-driven remote thread instantiation

• In-memory synchronization
– Control state is in the name space of the machine

– Producer-consumer in memory

– Local mutual exclusion protection

– Synchronization mechanisms as well as state are presumed to be intrinsic 
to memory

• Basic synchronization objects:
– Mutexes

– Semaphores

– Events

– Full-Empty bits

– Data flow

– Futures

– …

• User-defined (custom) LCOs



Advanced Models of Computation for 

Exascale Systems
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Active Global Address Space (AGAS)

• Distributed

• Assumes no coherence between localities

• User variables

• Synchronization variables and objects

• Threads as first-class objects

• Moves virtual named elements in physical space

• Parcel sets (but not parcels!)

• Process

– First class object

– Specifies a broad task

– Defines a distributed environment

• Spans multiple localities

• Need not be contiguous



Motivation for Parcels

• To achieve high scalability, efficiency, programmability

• To enable new models of computation

– e.g., ParalleX

• To facilitate conventional models of computation

– e.g., MPI

• Hide latency

– Support overlap of communication with computation

– Move work to data, not always data to work

• Work-queue model of computing

– Segregate physical resource from abstract task

– Circumvent blocking of resource utilization

• Support asynchrony of operation

• Maintain symmetry of semantics between local and remote operation
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Parcel Interaction with the System

LOUISIANA STATE UNIVERSITY 29

Parcels

AGAS

Locality 1

Locality 2

Locality 3

Locality n

Threads

LCOs

DCOs. . .
AMOs

processes

Main

Copy Semantics

Metathreads



30

Parcel Structure

LOUISIANA STATE UNIVERSITY

destination payloadaction continuations CRC

Transport / network layer

protocol wrappers

header trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize

the message footprint (e.g. destination address, checksum)



Parcel Destination

• Application specific addressing:

– Global virtual address of target (recipient) object

– Current implementation: HPX GID (global ID), 128-bit

• System specific addressing:

– Physical address of a hardware resource

– Supports direct access to register space or state machine 

manipulation

– May be required for percolation
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Parcel Actions

• Data movement

– Block read and write

– Lightweight scalar load/store

• Synchronization

– Atomic Memory Operations

– Basic LCOs

• Thread manipulation

– Thread instantiation

– Thread register access

– Thread control and state management

• Direct hardware access

– Counters

– Physical memory

– State machines
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Parcel Payload

• Lightweight

– Remote function arguments (includes LCO actions)

– AMO operands

– Scalar load / store

• Heavyweight

– Action-dependent

– Migrating object state

– Page relocation

– Some percolation instances
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Parcel Continuations

• Enables migration of flow control across global space

• Format: list of arbitrary LCOs

• Accept result(s) returned by parcel-invoked action

• Continuation types

– Return the value to the requestor

– Standard LCO evaluation

• Spawn local computation

• Propagate the result to another locality via parcel

– Perform a system call
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PXI Interface Synopsis
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Using HPX for AMR



Conclusions
• HPC is in a (6th) phase change

• Multicore will provide the basis for future Exascale HPC 

Systems by the End of the Next Decade

• Programming Gap for Mega-Multicore Systems Extends 

Requirements to Asynchronous Domain and Billion-way 

Parallelism

• Ultra high scale computing of the next decade will require a 

new model of computation to effectively exploit new 

technologies and guide system co-design

• ParalleX is an example of an experimental execution model 

that addresses key challenges to Exascale

• Early experiments prove encouraging for enhancing scaling 

of graph-based numeric and informatic applications
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